Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells
نویسندگان
چکیده
Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.
منابع مشابه
Plasmacytoid dendritic cells in angiolymphoid hyperplasia with eosinophilia
Background: Angiolymphoid hyperplasia with eosinophilia (ALHE) is characterized by irregularly-shaped blood vessels with an inflammatory infiltrate. While absent from normal skin, plasmacytoid dendritic cells (pDCs) infiltrate the skin upon injury and during several infectious, inflammatory, and neoplastic entities. In addition to providing anti-viral resistance, pDCs link the innate and adapti...
متن کاملThe p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons.
The correlation between functional and structural neuronal plasticity is by now well documented. However, the molecular mechanisms translating patterns of neuronal activity into specific changes in the structure of neurons remain unclear. Neurotrophins can be released in an activity-dependent manner, and they are capable of controlling both neuronal morphology and functional synaptic changes. T...
متن کاملTruncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor.
The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, T...
متن کاملBrief Communication A Pro-Apoptotic Fragment of the p75 Neurotrophin Receptor Is Expressed in p75NTR Null Mice
The p75 neurotrophin receptor (p75NTR) regulates neuronal survival, apoptosis, and growth. Recent studies have reported that disruption of Exon IV produces a null mouse lacking all p75NTR gene products (p75NTR ExonIV / ), whereas mice lacking p75NTR Exon III (p75NTR ExonIII / ) maintain expression of an alternatively spliced form of p75NTR (s-p75NTR). Here, we report that p75NTR ExonIV / mice e...
متن کاملEvaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells
Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Bloo...
متن کامل